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ABSTRACT: smart grid offers safe, reliable, and useful electricity. Phasor measuring units, smart meters & other 
monitoring and measurement devices in the smart grid keep track of statuses at every grid level. As a result, utilities, 
control centers & customers must exchange and retain an enormous amount of data in real time. As a result, data 
storage and communication require efficient data compression. To accurately reflect status of the system &  regenerate 
nearly flawlessly on receiving side, compression should preserve all of the data’s critical information. This work uses 
the discrete wavelet transform to recover compressed voltage sag signals. With reduced data, the disruptions can be 
communicated more quickly. Because the proposed system uses lesser filters and few decomposition layers, it is 
simpler than the previous design. The results of the simulation demonstrate improvement in the reconstruction error & 
compression ratio by minimizing their values. This design is time-saving and simple to use. 
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I. INTRODUCTION 

 
The current electrical grid has been uncertain, susceptible to blackouts and brownouts, giving significant transmission 
losses, low power quality, providing insufficient electricity, and discouraging the combination of distributed energy 
sources. Restructuring the power delivery system from the ground up was necessary to mitigate these problems. A 
developing combination of many technologies, the smart grid, or modernization of the electric grid, aimed to 
significantly alter the electrical power grid [1]. To enable widespread observability and real-time monitoring, a 
significant quantity of smart devices like meters and monitors were installed across the distribution network. In terms 
of computing knowledge, an interaction interface, and the ability to deal with signals and share knowledge, it generated 
new requirements. Consequently, there was a significant rise in data storage and interchange. Achieving an effective 
usage of channel bandwidth and a decreased requirement for storing electrical data were crucial in that situation [2]. 
 
 The smart grid’s unique characteristics included improved power security, detailed analysis to support system control, 
monitoring capability with data integration and efficient communication to satisfy power demand.Some of the smart 
grid’s amazing features were low costs and efficient energy use. The installation of the smart grid necessitated 
sophisticated communication between the devices that generated and consumed power. Choosing and using the most 
advanced digital signal processing algorithms had a significant impact on these devices’ efficiency [3]. Data produced 
by the Phasor Measurement Unit (PMU) had been compressed using the wavelet transform. Two separate wavelets, 
Coiflet1(coif1) and Daubechies2, were used for compression. The results showed that db2 compressed PMU-generated 
signals much more effectively than coif1 [4]. It suggested using compressed sensing to identify frequencies of 
harmonics that disrupted the fundamental current and voltage signals in power networks. By choosing a small number 
of samples at random, generated a measurement matrix and then moved the signal in compressed form from time to 
frequency form using linear transform. The signal was then reconstructed using the inverse linear transform on a few 
recorded samples [5]. 
 
It used a compression method for electrical disturbing signal with Wavelet Packet Transform (WPT) and Discrete 
Wavelet Transform (DWT). Minimal Description Length (MDL) was a criterion for selecting an appropriate wavelet 
function and ideal quantity of wavelets preserved elements for signal reconstruction [6]. A lossy mechanism to 
compress data in smart distribution system was presented by Singular Value Decomposition (SVD). The proposed 
technique notably reduced the data quantity while accurately recreating the original signal [7].  
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It was important to use multiple compression techniques for data with diverse characteristics. The research suggested a 
fusion lossy and lossless data compression technique based on signal properties to overcome such problems [8]. The 
wavelet packet transform on which it was based optimized the data compressing in accordance with the intended data 
loss. A specialized reconstructing technique that effectively created images straight from the compressed data was 
further developed [9]. The challenge of processing and storing excessive amounts of aging data in IGBT failure 
diagnosis was addressed by an adaptive threshold wavelet compression technique [10]. Wavelet decomposition was 
used, followed by range coding and quantization appropriate for floating-point data [11]. An innovative multivariate 
data compression approach was put forth for Internet of Things smart metering. To minimize data dimension, the 
method took advantage of the cross-correlation between several variables that smart meters sensed [12]. The matrix 
having ideal quantity of singular values was subjected to the Optimal Singular Value Decomposition (OSVD); the 
remaining values were ignored. The ratio of compression and retrieved data quality allowed goal achievement [13]. Sub 
bands or wavelet transform decomposition levels were used to segment the modified spectrum in the models that were 
suggested to estimate the adaptive spectral envelope [14]. 
 
 It used basis, matching, and orthogonal matching pursuit as sensing methods to recover signals lost as a result of 
transmission line power failures. The actual data represented the real time current and voltage levels. Although it 
required more samples than orthogonal matching pursuit, matching pursuit was the best choice for actual electrical fault 
recovery as it required just a little of machine time. Basis and orthogonal matching employed fewer random samples, 
but they required more processing time for signal restoration [15]. 
 
 Wavelet Packet Decomposition (WPD) were utilized to analyze, denoise and compress smart grid system data. WPD 
provided sufficient redundancy removal and feature property retention to enhance noise mitigation, boost compression, 
and control data accuracy degradation [16]. It used weight-based entropy to identify the optimum basis tree from 
complete WPT for denoising and signal compression. A modified minimum description length technique could be used 
to modify the denoising threshold without requiring a noise measurement computation [17]. A comprehensive 
assessment had been done for the importance of wavelet transform for different simulated or actual data by comparative 
studies on digital signal processing techniques [18]. It worked on a wavelet-based method that applied DWT to reduce 
noise and compress smart grid data [19]. This technique tested the effectiveness on Phasor Measurement Unit data by 
using wavelet packet transform to break down the signal for one to five scale [20]. A wavelet packet transform design 
for level three, data compression and reconstruction was represented utilizing lower-order wavelets. It operated on the 
phasor measurement unit current magnitude signals and voltage sag signals [21]. In order to obtain excellent 
compression of power quality disturbances, it investigated the best wavelet and the ideal number decomposition scale 
[22]. 
 
 A fuzzy-based data compression method was put forth with the goal of lessening the computing load associated with 
data analysis in smart grids [23]. A traditional method of evaluating manufacturing quality involved reconstructing the 
shape of manufactured workpieces to create a digital version of the physical product and assessing the quality further 
[24]. Surface reconstruction techniques were applied to a cloud of data points taken from the workpiece using reverse 
engineering techniques. The approach used the bat algorithm, a wellknown metaheuristic technique. For huge 
ultrasonic data compression, it created neural network models based on unsupervised learning as well as a novel 
multilayer autoencoder with excellent compression capabilities [25]. It explained the Huffman method [26], contrasted 
it with run length encoding and arithmetic coding, and discussed how these three algorithms were used in JPEG 
compression. Compression technology was revolutionized by the emergence of large artificial intelligence models that 
were trained on enormous volumes of data [27]. The computational difficulties utilized the advantages of lossless 
compression in a lossy mode and vice versa for data restoring, associated intelligent compressive sensing rebuilding, 
effective domain-independent solutions [28]. It also encouraged machine learning in data compression. The method 
was computationally complex. The matrix made the compressed sensing approach complicated [15, 19–22]. By 
employing level 1 with the wavelet Db3, levels 2, 3 with the wavelets Db2, and level 4 with Db1, DWT was employed 
to compress and denoise smart grid signal [19]. Using wavelet Db3 for level 1, Db2 for 2, 3, 4 levels and level 5 with 
Db1 using WPT, it reduced and cleaned smart grid data [20]. The novel approach integrated level 1 with Db3, level 2 
with Db2, and level 3 with Db1 using the wavelet packet transform [21]. It used a Db4 wavelet at level 3 to compress 
the voltage sag signal via wavelet transform [22]. 
 
The reconstruction error and compression ratio can be improved, and the complexity can be further reduced. 
Consequently, the novel approach proposes integration of several minimum-order wavelet functions and a levelbased 
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suitable threshold by employing discrete wavelet transform. Achieving excellent compression and reconstruction by 
decomposing at level 3 simplify the process. The outcomes will be compared with those of [15, 20–23]. 
 

II. SYSTEM DEVELOPMENT 

 
A strong mathematical tool for analyzing non-stationary signals in terms of time-frequency was Discrete Wavelet 
Transform. For signal analysis, multi-resolution filter banks were employed. Time-domain discrete data was converted 
to time-frequency domain using the Discrete Wavelet Transform. A signal was sent through a number of filters to 
determine its DWT. A high pass filter, HPF and a lower pass filter, LPF were applied to the signals at the same time. 
Each level of decomposition resulted in the branching of the input data into two outputs, one corresponding to the input 
signal’s upper half-band and the other to its lower half-band. Half of the input data for each branch was used as the 
sampling rate. The overall sample rate stayed the same as a result. Only the lowest half-band branch of the DWT has 
undergone decomposition. For many signals, the most crucial details were included in lower-frequency part to identify 
the signal. The contents in high-frequency provided signal details. The high-scale or low-frequency components were 
used as an approximation. The lower-scale, high-frequency components were the details. The coefficients were the 
values of the converted data in the time-frequency. Whereas the coefficients with big absolute values conveyed more 
information about the data than noise, the coefficients with lower absolute values were dominated by noise. The 
wavelet coefficients were either cancelled out to zero (hard threshold) or reduced (soft threshold) in the second phase if 
they did not cross a predetermined threshold level. Reconstructing the signal from the resulting coefficients utilizing 
Inverse Discrete 
 

 
 

Fig. 1. Proposed approach for compression and reconstruction 
 

The signal in Fig. 1 is divided into approximate and detail elements using DWT, and after it is reconstructed using 
IDWT. The compressing method uses the Daubechies filters Db3, Db2, and Db1 at levels 1 through 3, and the 
reconstruction process uses the same filters in reverse. When the voltage sag signal is generated in SIMULINK in 
MATLAB 2021a, a waveform including 357, 379, 412, 501, and 512 samples (data points) is produced. There is a 
voltage sag signal that represents the load voltage data. 
 
Both high and low pass filters are applied to the set of input data a0, length N in this procedure. The coefficients of 
each filter are N/2. The coefficients of approximation a1 at resolution level one, are the outcome of LPF. The detail 
coefficients d1 of the level first resolution are the outcome of HPF. For a second pair of wavelets, a1 can be applied as 
the input to generate the coefficients of approximation a2 and, details d2 at second level resolution. The procedure 
continues up to resolution level 3. At each level, the detail coefficients are subjected to hard thresholding. The 
coefficients a22 is produced during reconstruction using the detail coefficients after hard thresholding d33 and the pure 
approximation coefficients a3. To retrieve the signal a00, the operation will be repeated continually. 
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III. WORKING OF CIRCUIT 

              
The proposed design is evaluated using the performance metrics provided below. It communicates the compressed 
signal as a percentage of the compression ratio (% CR), like in (1). The lower the percentage of CR, the better the 
compression. The normalized root mean square error, or NRMSE, is employed to calculate the reconstruction signal 
error for the proposed design in accordance with “(2)” in [16] and [17]. Reconstruction is better when the 
reconstruction error is lower. In (3), the variable e represents the percentage relative error and in (4) it shows how the 
percentage of rebuilding, determines the existing design’s effectiveness [5, 15]. 
 

%CR = 
N′N  × 100                                                                                                                                 (1) 

NRMSE = √∑ [x(i)−xr(i)]2N−1i=0 N2                                                                                                                  (2) 

 

(% relative error) =
⌈∑ [x(i)−xr(i)]N−1i=0 ⌉x(i)  × 100                                                                                            (3) 

%Reconstruction = 100 − 𝑒                                                                                                                 (4) 
 
The initial and regenerated signals are represented by X (i) and X r (i), respectively. N’ represents number for nonzero 
coefficients by threshold and N is original samples number 

 
IV. RESULTS, DISCUSSION OF RESULTS AND CONTRIBUTIONS OF THE RESEARCH 

 

       The following waveforms in MATLAB 2021a illustrate the outcomes of the suggested design, with the original 
signal or reconstructed signal amplitude in pu (per unit) on the y-axis and the number of samples on the x-axis. 
 
          Fig. 2 (a) to Fig. 6 (a) display the voltage sag signals of the original samples, while Fig. 2 (b) to Fig. 6 (b) display 
the signals which are regenerated using the recommended design. Fig. 2 (b) illustrates the reconstructed signal with an 
NRMSE of 4.13×10-4, which is 99.99%, from the 357 original samples in Fig. 2 (a). For the 379 original samples 
displayed in Fig. 3 (a), 99.99% reconstructed signal with NRMSE 4.64×10-4 is displayed in Fig. 3 (b). For the 412 
original samples shown in Fig. 4 (a), the 99.99% reconstructed signal with NRMSE 3.80×10-4 is shown in Fig. 4 (b). 
For the 501 original samples in Fig. 5 (a), the 99.94% reconstruction signal with NRMSE 3.29×10-4 is displayed in Fig. 
5 (b). For the 512 original samples in Fig. 6 (a), the 99.98% reconstructed signal with NRMSE 2.74×10-4 is illustrated 
in Fig. 6 (b). The results are better than [15, 20–23]. The signal is more distorted for highly compressed signal. The 
signal is approximately reconstructed best for 512 voltage sag original samples with 99.98% reconstruction and 
smallest NRMSE 
 

 
 

Fig. 2. (a) Original voltage sag of 357 samples 
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Fig. 2. (b) reconstruction 99.99% using DWT-based proposed design 
 

 
 

Fig. 3. (a) Original voltage sag of 379 samples 
 

 
 

Fig. 3. (b) reconstruction 99.99% using DWT-based proposed design 
 

 
 

Fig. 4. (a) Original Voltage sag of 412 samples 
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FIG. 4. (B) RECONSTRUCTION 99.99% USING DWT-BASED PROPOSED DESIGN 
 

 
 

FIG. 5. (A) ORIGINAL VOLTAGE SAG OF 501 SAMPLES 
 

 
 

FIG. 5. (B) RECONSTRUCTION 99.94% USING DWT-BASED PROPOSED DESIGN. 
 

 
 

FIG. 6. (A) ORIGINAL VOLTAGE SAG OF 512 SAMPLES AND. 
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FIG. 6. (B) RECONSTRUCTION 99.98% USING DWT-BASED PROPOSED DESIGN 
 

V. EXPECTED CONCLUSION 

 
This paper’s goal is to compress and recreate smart grid voltage sag signals from different samples using 
proposedtechnique with discrete wavelet transform. Level 3 decomposes the signal in the suggested configuration. The 
suggested solution uses fewer lower order wavelet filters, which decreases complexity even though it produces more   
data compression than previous results. The suggested design attains CR 19.05% and NRMSE 4.13 10-4 with 99.99% 
reconstruction for 357 original voltage sag samples. With an NRMSE of 2.74 10-4 and a 99.98% reconstruction, it 
achieves CR 19.34% for 512 original voltage sag samples. Data compression, reconstruction error, and percentage 
reconstruction have all improved considerably compared to previous studies. 
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